Abstract

The anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated in several marine harbor sediments. In sediments from Boston Harbor that were heavily contaminated with petroleum, [ 14C]-naphthalene and [ 14C]-phenanthrene were oxidized to 14CO 2 without a lag, suggesting that the microbial community was adapted for anaerobic PAH oxidation in situ. The addition of molybdate, a specific inhibitor of sulfate-reducing microorganisms, inhibited PAH mineralization which suggested that sulfate reducers were involved in the anaerobic oxidation of the PAHs. PAHs were also anaerobically oxidized at another site in Boston Harbor that was less heavily contaminated, but at a slower rate than in the most heavily contaminated sediments. Sediments not contaminated with petroleum did not significantly oxidize the PAHs. A similar correspondence between rates of anaerobic PAH oxidation and the degree of PAH contamination was observed in sediments from Tampa Bay and San Diego Bay. When relatively pristine sediments from San Diego Bay that did not have a significant capacity for anaerobic PAH oxidation were exposed to high concentrations of naphthalene, they developed a potential for naphthalene degradation that was comparable to that in sediments that had a history of PAH contamination. The increase in potential for naphthalene degradation in the sediments exposed to naphthalene was associated with an increase in naphthalene-degrading microorganisms. These results suggest that many marine harbor sediments contain microorganisms capable of anaerobically oxidizing PAHs under sulfate-reducing conditions and that these microorganisms will respond with an increase in their activity when PAHs are introduced into the sediments. Thus, if PAH inputs into harbor sediments from petroleum can be reduced there may be a widespread potential for microorganisms to remove this PAH contamination from the sediments, despite anaerobic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call