Abstract

Pressmud compost is an organic soil amendment and a robust technology that has potential to restore toxic metals (TMs) polluted soil. The application of organic amendments including pressmud compost in soil for toxic metals (TMs) alleviation have gained considerable attention as compared to traditional methods among the scientific community. In this review paper, we summarized the literature aiming to understand the immobilization efficacy of TMs such as cadmium, lead, chromium, copper, nickel, iron, zinc, and manganese, underlying mechanisms, plant growth, essential nutrients and soil health under pot, field and incubation conditions which has not been well investigated up-to-date. The application of pressmud compost at 10 t ha−1 rate has shown highly potential to reduce the bioavailability and bioaccumulation of TMs in the polluted soil. The immobilization mechanism of TMs in soil depends on soil pH, soil type, cation exchange capacity, hydraulic conditions, nutrients dynamics and soil properties. The application of pressmud compost integrated with biochar, compost, rock phosphate, farmyard manure, bagasse ash, molasses immobilized the cadmium, lead, copper, chromium, nickel and zinc in alkaline polluted soil, whereas pressmud compost combined with poultry manure and farmyard manure increased the bioavailability of lead, cadmium, cobalt, chromium, copper, zinc, iron and manganese in acidic soil, it could be due to aging of pressmud compost, application rate, metal type, nature of soil, particle size, application method, plant type and agronomic practices. There is a lack of knowledge on the phyto-management of arsenic, mercury and boron in soil amended with pressmud compost. Future studies must be focused on potential of pressmud compost co-amended with minerals, modified biochars and nano-material for immobilization of TMs in polluted soil-plant through machine learning/artificial intelligence in order to reduce the health risks and improve public health safety in urban and rural areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.