Abstract
Ions play a key role in the destabilization of collagen. This study explores the effect of diethyl methyl ammonium methane sulfonate (AMS), an ionic liquid (IL), on different hierarchical orderings of collagen, namely, at the molecular and fibrillar levels. The rheological behavior and secondary structural changes reveal changes in the hydrogen-bonding environment of collagen, leading to alterations in the triple helical structure of collagen. An increase in the concentration of AMS resulted in swelling of rat-tail tendon fibers, and also, decreased thermal stability signifies that ions are obliged to destabilize collagen at the fibrillar level. Molecular modeling studies confirm that anions are judiciously held responsible for structural deformities in collagen, whereas cations have a tenuous effect. Thus, the preferential role of ions present in an ammonium IL has been elucidated in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.