Abstract
The precise characterization of post translational modifications (PTMs) is important for the understanding of protein regulatory mechanisms and their role in disease. However, experimental studies on PTMs, especially with multifunctional proteins are difficult to follow and investigate. Bioinformatic tools are therefore helpful in predicting key protein modifications. To study the role of PTMs in claudin proteins, specifically claudin-1, -3 and -4 in the onset or progression of human cancers, we performed an in silico study of various PTMs and investigated their interplay. Given that the activity of claudins is known to be influenced by two types of PTMs, specifically palmitoylation and kinase- dependent phosphorylation, we predicted two conserved regions in the topological domains of claudin-1, -3 and -4 as potential palmitoylation sites. Furthermore, conserved phosphorylation residues, which may be targets for kinases and can alter claudin's ability to maintain the integrity of tight junctions, were identified. To our knowledge, this is the first report to suggest O-glycosylation of claudin proteins, as well as a potential novel interplay between phosphorylation and O-glycosylation at Yin Yang sites. Thus, our findings may facilitate the production of anti-cancer drugs, and suggest that novel therapeutic strategies should target post translational events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.