Abstract

BackgroundMalaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like receptors (TLRs)-signalling pathway have been associated with either susceptibility or resistance to several infectious and inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs) of TLR2, TLR4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A could modulate malaria susceptibility and severity.MethodsThis study was planned to make a further contribution to solving the problem of the real role of the most common polymorphisms of TLR4, TLR9, TIRAP and FCGR2A genes in modulating the risk of malaria and disease severity in children from Burundi, Central Africa. All the paediatric patients aged six months to 10 years admitted to the hospital of Kiremba, Burundi, between February 2011 and September 2011, for fever and suspicion of acute malaria were screened for malaria parasitaemia by light microscopy of thick and thin blood smears. In children with malaria and in uninfected controls enrolled during the study period in the same hospital, blood samples were obtained on filter paper and TLR4 Asp299Gly rs4986790, TLR9 G1174A rs352139, T-1486 C rs187084 TLR9 T-1237 C rs5743836, TIRAP Ser180Leu rs8177374 and the FCGR2A His131Arg rs1801274 polymorphisms were studied using an ABI PRISM 7900 HT Fast Real-time instrument.ResultsA total of 602 patients and 337 controls were enrolled. Among the malaria cases, 553 (91.9 %) were considered as suffering from uncomplicated and 49 (8.1 %) from severe malaria. TLR9 T1237C rs5743836CC was associated with an increased risk of developing malaria (p = 0.03), although it was found with the same frequency in uncomplicated and severe malaria cases. No other differences were found in all alleles studied and in genotype frequencies between malaria cases and uninfected controls as well as between uncomplicated and severe malaria cases.ConclusionsTLR9 T1237C seems to condition susceptibility to malaria in Burundian children but not its severity, whereas none of the assessed SNPs of TLR4, TIRAP and FCGR2A seem to influence susceptibility to malaria and disease severity in this population.

Highlights

  • Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries

  • Several studies have demonstrated that TLR2, TLR4 and TLR9 are involved in the recognition of P. falciparum ligands and that, when encountering the parasite, they elicit a complex cascade of signalling events

  • TLR9 T1237C rs5743836CC was associated with an increased risk of developing malaria (p = 0.03), it was found with the same frequency in uncomplicated and severe malaria cases

Read more

Summary

Introduction

Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like receptors (TLRs)-signalling pathway have been associated with either susceptibility or resistance to several infectious and inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs) of TLR2, TLR4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A could modulate malaria susceptibility and severity. TLRs are a group of trans-membrane proteins, present in monocytes, macrophages and dendritic cells that play a crucial role in the innate immune system This operates by differentially recognizing pathogen-associated molecular patterns through their extracellular receptor modules and initiating inflammatory signalling pathways through an intracellular domain [4]. Studies planned to evaluate the importance of genetics in conditioning susceptibility to and clinical manifestations of malaria have reported conflicting results for all these genetic variants [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.