Abstract

Quality factors such as particle consolidation and oxidation have been claimed to impair the performance of ultrahigh molecular weight polyethylene implants, but no definite data estimate their real effect. To assess the influence of these quality determinants in wear, wear rate, and time in service at a single, well proven design, the percentage area of polyethylene sections occupied by nonconsolidated polyethylene particles, the presence of a white band, and the amount of polyethylene oxidation (through density curves) were evaluated in 92 retrieved Charnley acetabular components with available clinical data. The average percentage area of nonconsolidated polyethylene particles in cup sections was 3.1%. There were 11 cups showing a subsurface white band. The authors observed an average density in the deep polyethylene of 0.9420 g/cc after an average in vivo use of 9.8 years (range, 0.08-20.3 years). Banded cups showed significantly higher subsurface densities. When studying the relationship among clinical and material factors with performance variables, wear measurements (obtained through radiographic methods and direct measurements of polyethylene thickness in the collected implants) correlated with age at implantation, activity, and time in service. Weight was a determinant of the wear rate. None of the studied polyethylene quality factors showed a definite association with wear performance or time to failure in this series. Implant survivorship was not significantly impaired in the 22.225-mm Charnley low friction replacement by a subsurface white band or by a higher area occupied by nonconsolidated particles. Fewer nonconsolidated particles were not associated with longer survivorship. This design proved tolerance to polyethylene quality variations, in the signaled ranges, without a significant effect in the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.