Abstract
Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have recently drawn intense attention as potential photovoltaic materials. However, n = 1 two-dimensional (2D) HOIPs face the challenge of low conductivity between the inorganic layers, leading to unsatisfactory device performance. Interestingly, 2D HOIPs employing π-conjugated molecules as organic moieties show energy and charge transfers between organic and inorganic layers, indicating potentially efficient carrier transport for photovoltaic applications. Nevertheless, the development of 2D HOIP-based solar cells especially utilizing polycyclic aromatic alkylammonium as cations is in its infancy. Herein, we investigated the electronic structure and band alignment of a series of n = 1 2D Ruddlesden-Popper (RP) phase HOIPs containing different polycyclic aromatic groups and alkyl chains, based on density functional theory calculations. We find that the polycyclic aromatic group plays an important role in controlling the functionality of 2D HOIPs by directly modifying band-edge states, and the band alignment at the organic-inorganic interface can be designed to promote either exciton trapping or dissociation for light-emitting or photovoltaic applications, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.