Abstract

AbstractTwo polyaniline (PANI) samples of various molecular masses were used for the preparation of palladium catalysts (with 2 mass % of Pd). The physicochemical features of starting polyanilines were found to substantially affect the size and extent of palladium nanoparticles aggregation. Strongly aggregated large palladium particles appeared in the PANI sample of more compact morphology (PANI-H), higher crystallinity and lower specific surface area. Pd nanoparticles of a definitively smaller size were formed in the more amorphous PANI sample of looser morphology (PANI-L) and the extent of particles aggregation was markedly lower. The catalytic properties of Pd/PANI samples were studied in a liquid phase hydrogenation of unsaturated triple bond (C≡C) in alkynes reactants, phenylacetylene, and cyclohexylacetylene. The 2 mass % Pd/PANI-L catalyst prepared using polymer of less compact texture exhibited much higher activity in both reactions. In the presence of the 2 mass % Pd/PANI-L catalyst, alkene products were formed with a high selectivity (approximately 90 %) attained at the almost complete conversion of alkynes. This highly selective hydrogenation of the C≡C to the C=C bond was related to the presence of an electroactive polymer, PANI, in close proximity with Pd active sites. Polyaniline could have a role in a steric effect as well as in a modification of adsorptive properties of Pd centres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.