Abstract

Among the earliest responses of mammalian cells to DNA damage is catalytic activation of a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Activated PARP-1 forms the polymers of ADP-ribose (pADPr or PAR) that posttranslationally modify its target proteins, such as PARP-1 and DNA repair-related proteins. Although this metabolism is known to be implicated in other repair pathways, here we show its role in the versatile nucleotide excision repair pathway (NER) that removes a variety of DNA damages including those induced by UV. We show that PARP inhibition or specific depletion of PARP-1 decreases the efficiency of removal of UV-induced DNA damage from human skin fibroblasts or mouse epidermis. Using NER-proficient and -deficient cells and in vitro PARP-1 assays, we show that damaged DNA-binding protein 2 (DDB2), a key lesion recognition protein of the global genomic subpathway of NER (GG-NER), associates with PARP-1 in the vicinity of UV-damaged chromatin, stimulates its catalytic activity, and is modified by pADPr. PARP inhibition abolishes UV-induced interaction of DDB2 with PARP-1 or xeroderma pigmentosum group C (XPC) and also decreases localization of XPC to UV-damaged DNA, which is a key step that leads to downstream events in GG-NER. Thus, PARP-1 collaborates with DDB2 to increase the efficiency of the lesion recognition step of GG-NER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.