Abstract
Respiratory Syncytial Virus (RSV) is a significant cause of lower respiratory tract infections (LRTI) across all demographics, with increasing mortality and morbidity among high-risk groups such as infants under two years old, the elderly, and immunocompromised individuals. Although newly approved vaccines and treatments have substantially reduced RSV hospitalizations, accessibility remains limited, and response to treatment varies. This underscores the importance of comprehensive studies on host-RSV interactions. tRNA-derived RNA fragments (tRFs) are recently discovered non-coding RNAs, notable for their regulatory roles in diseases, including viral infections. Our prior work demonstrated that RSV infection induces tRFs, primarily derived from the 5'-end of a limited subset of tRNAs (tRF5), to promote RSV replication by partially targeting the mRNA of antiviral genes. This study found that tRFs could also use their bound proteins to regulate replication. Our proteomics data identified that PABPC1 (poly(A)-binding protein cytoplasmic 1) is associated with tRF5-GluCTC, an RSV-induced tRF. Western blot experimentally confirmed the presence of PABPC1 in the tRF5-GluCTC complex. In addition, tRF5-GluCTC is in the anti-PABPC1-precipitated immune complex. This study also discovered that suppressing PABPC1 with its specific siRNA increased RSV (-) genome copies without impacting viral gene transcription, but led to less infectious progeny viruses, suggesting the importance of PABPC1 in virus assembly, which was supported by its interaction with the RSV matrix protein. Additionally, PABPC1 knockdown decreased the production of the cytokines MIP-1α, MIP-1β, MCP-1, and TNF-α. This is the first observation suggesting that tRFs may regulate viral infection via their bound proteins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.