Abstract

We studied the ionic/electronic transport and resistance degradation behavior of dielectric oxides by solving the electrochemical transport equations. Here, we took into account the non-periodical boundary conditions for the transport equations using the Chebyshev collocation algorithm. A sandwiched Ni|SrTiO3|Ni capacitor is considered as an example under the condition of 1.0 V, 1.0 μm thickness for SrTiO3 layer, and a temperature of 150 °C. The applied voltage resulted in the migration of ionic defects (oxygen vacancies) from anode towards cathode. The simulated electric potential profile at steady state is in good agreement with the recent experimental observation. We introduced the possibility of polaron-hopping between Ti3+ and Ti4+ at the electrode interface. It is shown that both the oxygen vacancy transport and the polaron-hopping contribute to the resistance degradation of single crystal SrTiO3, which is consistent with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.