Abstract

Simple SummaryPancreatic cancer is among the most lethal cancers. The expression of PLEXIND1, a receptor, is upregulated in many cancers (including pancreatic cancer). Traditionally, PLEXIND1 is known to be involved in neuron development and mediate semaphorin signaling. However, its role and signaling in cancer is not fully understood. In our study, we present a new mechanism through which PLEXIND1 mediates its roles in cancer. For the first time, we demonstrate that it can function as a transforming growth factor beta coreceptor and modulate SMAD3 signaling. Around 90% of pancreatic cancer patients have mutant KRAS. Our work suggests that PLEXIND1 functions differently in pancreatic cancer cell lines, and the difference correlates with KRAS mutational status. Additionally, we demonstrate a novel peptide based therapeutic approach to target PLEXIND1 in cancer cells. Our work is valuable to both neuroscience and cancer fields, as it demonstrates an association between two previously unrelated signaling pathways.PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.