Abstract
Plantations of rapidly growing trees are becoming increasingly common because the high productivity can enhance local economies, support improvements in educational systems, and generally improve the quality of life in rural communities. Landowners frequently choose to plant nonindigenous species; one rationalization has been that silvicultural productivity is enhanced when trees are separated from their native herbivores and pathogens. The expectation of enemy reduction in nonindigenous species has theoretical and empirical support from studies of the enemy release hypothesis (ERH) in the context of invasion ecology, but its relevance to forestry has not been evaluated. We evaluated ERH in the productive forests of Galicia, Spain, where there has been a profusion of pine plantations, some with the indigenous Pinus pinaster, but increasingly with the nonindigenous P. radiata. Here, one of the most important pests of pines is the indigenous bark beetle, Tomicus piniperda. In support of ERH, attacks by T. piniperda were more than twice as great in stands of P. pinaster compared to P. radiata. This differential held across a range of tree ages and beetle abundance. However, this extension of ERH to forestry failed in the broader sense because beetle attacks, although fewer on P. radiata, reduced productivity of P. radiata more than that of P. pinaster (probably because more photosynthetic tissue is lost per beetle attack in P. radiata). Productivity of the nonindigenous pine was further reduced by the pathogen, Sphaeropsis sapinea, which infected up to 28% of P. radiata but was absent in P. pinaster. This was consistent with the forestry axiom (antithetical to ERH) that trees planted "off-site" are more susceptible to pathogens. Fungal infections were positively correlated with beetle attacks; apparently T. piniperda facilitates S. sapinea infections by creating wounds and by carrying fungal propagules. A globally important component in the diminution of indigenous flora has been the deliberate large-scale propagation of nonnative trees for silviculture. At least for Pinus forestry in Spain, reduced losses to pests did not rationalize the planting of nonindigenous trees. There would be value in further exploration of relations between invasion ecology and the forestry of nonindigenous trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.