Abstract

The mouse submandibular gland (SMG) epithelium undergoes extensive morphogenetic branching during embryonic development as the first step in the establishment of its glandular structure. However, the specific signaling pathways required for SMG branching morphogenesis are not well understood. Using E13 mouse SMG organ cultures, we showed that inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), wortmannin and LY294002, substantially inhibited branching morphogenesis in SMG. Branching morphogenesis of epithelial rudiments denuded of mesenchyme was inhibited similarly, indicating that PI 3-kinase inhibitors act directly on the epithelium. Immunostaining and Western analysis demonstrated that the p85 isoform of PI 3-kinase is expressed in epithelium at levels higher than in the mesenchyme. A target of PI 3-kinase, Akt/protein kinase B (PKB), showed decreased phosphorylation at Ser 473 by Western analysis in the presence of PI 3-kinase inhibitors. The major lipid product of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PIP 3), was added exogenously to SMG via a membrane-transporting carrier in the presence of PI 3-kinase inhibitors and was found to stimulate cleft formation, the first step of branching morphogenesis. Together, these data indicate that PI 3-kinase plays a role in the regulation of epithelial branching morphogenesis in mouse SMG acting through a PIP 3 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.