Abstract

The alteration in cellular metabolism whereby cancer cell meets the demand of bioenergetics, biosynthesis, and redox status to support their uncontrolled cell proliferation, growth, tumor progression, and metastasis is considered as a prominent hallmark of cancer. Warburg effect is the most commonly noticed consequence of these metabolic reprogramming which aggravate cancer cell to opt for glycolytic pathway over more efficient oxidative phosphorylation even under normoxic condition to generate lactate, as well as intermediates for lipid, nucleotide, amino acids synthesis, which are essential to maintain tumorigenesis and cancer progression. In order to develop efficient chemotherapeutic drug, various enzymes and proteins involved or associated with glycolytic pathways such as PMK2, LDHA and signaling pathways such as PKI3-Akt-mTOR are being targeted to inhibit various stages of cancer progression. In that direction, phytochemicals that are bioactive compounds obtained from plant sources have displayed promising results in hampering the growth of various cancer cell lines. Compounds of flavonoid class such as quercetin and fisetin along with other polyphenols and non-flavonoids such as resveratrol, isothiocyanates, and curcumin have displayed remarkable inhibitory effect on cancer cell metabolism. Overall, this chapter will highlight the effect of different phytochemicals on the metabolic pathways of cancer cells to inhibit various stages of cancer progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call