Abstract

Photophysics processes are ubiquitous in nature and difficult to be quantitatively characterized by conventional spectroscopy. Alternatively, pump-probe methods have been widely applied to study these complex processes. In this context, the thermal lens technique is a precise spectroscopic tool for material characterization and presents a wide range of applications in chemical analysis. Here, we present an all numerical approach to analyze the dynamics of photophysics processes and to identify the role of individual contributions of photoreaction and mass diffusion in the thermal lens experiments. The results are essential for a proper understanding of the dominant physical mechanisms in laser-induced photodegradation, which allow precise data analysis of the effects in photosensitive fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.