Abstract

Polarization independence in a one-dimensional resonant grating waveguide structure involves the simultaneous excitation of two guided modes propagating in different directions. Possible simultaneous excitations occur when the two excited guided modes have either the same polarization, i.e., TE-TE (transverse electric) or TM-TM (transverse magnetic), or different polarizations, i.e., TE-TM. Simultaneous excitations may result in bandgaps and singularities. We confirm and show that in order to achieve polarization independence, it is necessary to find the conditions that minimize the effects of such bandgaps and singularities and experimentally demonstrate tunable polarization independence for simultaneously excited TE-TM-guided modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call