Abstract

The results presented in this study establish an association between phospholipase C-beta (PLC-beta) and tight junction permeability across Madin-Darby canine kidney (MDCK) cell monolayers, an in vitro model for epithelial tissue. These results further show that PLC-beta modulates tight junction permeability by affecting actin filament organization. Hexadecylphosphocholine (HPC) inhibited PLC-beta and increased tight junction permeability in MDCK cells. Interestingly, the analogs of HPC, a series of alkylphosphocholines containing various lengths of linear alkyl chains, inhibited PLC-beta and increased tight junction permeability with a wide range of potency. The potency of alkylphosphocholines as enhancers of tight junction permeability significantly correlated (p < 0.05) with their potency as PLC-beta inhibitors. U73122, a steroid derivative that is structurally unrelated to alkylphosphocholines, inhibited PLC-beta and increased tight junction permeability with potencies that fit into the correlation observed for the alkylphosphocholine series. U73122 and HPC induced disorganization of actin filaments in MDCK cell monolayers. The potencies to cause disorganization of actin filaments were consistent with the potencies of these agents as inhibitors of PLC-beta and enhancers of tight junction permeability. Furthermore, ATP, an activator of PLC-beta, attenuated U73122-induced increase in tight junction permeability as well as disorganization of actin filaments. These results provide strong evidence that PLC-beta inhibition leads to increased tight junction permeability across MDCK cell monolayers through disorganization of actin filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.