Abstract

We addressed the in vivo role of phosphatidylinositol 3-kinase-gamma (PI3K-gamma) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-gamma (PI3K-gamma(-/-) mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-gamma(-/-) mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-gamma(-/-) mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-gamma(-/-) mice was associated with increased expression of the PMN adhesive proteins CD47 and beta(3)-integrins. We observed increased association of CD47 and beta(3)-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-gamma(-/-) mice after E. coli challenge. PMNs from these mice also showed increased beta(3)-integrin expression and augmented beta(3)-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-gamma in negatively regulating CD47 and beta(3)-integrin expression in gram-negative sepsis. PI3K-gamma activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and beta(3)-integrin expression. Therefore, the level of PI3K-gamma activation may be an important determinant of PMN-dependent lung vascular injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.