Abstract
The objective of this work was to evaluate the possible role of PI3-kinase/AKT as a survival pathway against CYP2E1-dependent toxicity. E47 cells (HepG2 cells transfected with human CYP2E1 cDNA) exposed to 25 microM iron-nitrilotriacetate+5 microM arachidonic acid (AA+Fe) developed higher toxicity than C34 cells (HepG2 cells transfected with empty plasmid). Toxicity was associated with increased oxidative stress and activation of calcium-dependent hydrolases calpain and phospholipase A2. Treatment of E47, but not C34 cells, with arachidonic acid and iron (AA+Fe) led to a decrease in the phosphorylation state of AKT. 2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), a specific inhibitor of PI3-kinase, produced a further decrease of phosphorylated AKT in AA+Fe-treated E47 cells. LY294002 and down-regulation of endogenous AKT with small interference RNAs increased the toxicity of AA+Fe in E47 cells. Toxicity of AA+Fe in rat hepatocytes was also increased by LY294002. LY294002 did not affect phospholipase A2 or calpain activation, CYP2E1 activity, or lipid peroxidation elicited by AA+Fe. alpha-Tocopherol prevented both AA+Fe and AA+Fe+LY294002-induced toxicity and decrease of phosphorylated AKT. LY294002 potentiated AA+Fe-induced loss of mitochondrial membrane potential and ATP, whereas overexpression of constitutively active AKT partially prevented mitochondrial impairment and toxicity. Mitochondrial permeability transition inhibitors prevented both AA+Fe and AA+Fe+LY294002-induced toxicity and decrease of mitochondrial membrane potential. These results suggest that: i) AA+Fe+CYP2E1-induced oxidative stress decreases AKT activation; ii) AKT inactivation induces mitochondrial impairment associated with opening of the permeability transition pore but is not dependent on the activation state of bad, glycogen synthase kinase-3beta, mammalian target of rapamycin, or bcl-xL; and iii) PI3-kinase/AKT may serve as a survival pathway against CYP2E1-dependent toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.