Abstract

ABSTRACTDiglycolamides have been proposed for partitioning of trivalent actinides from high-level liquid waste (HLLW). Third-phase formation is an undesirable event during the course of solvent extraction of trivalent actinides from HLLW into the solution of N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA) in n-dodecane (n-DD). Polar reagents such as tri-n-butyl phosphate (TBP), and N,N-dihexyloctanamide (DHOA) have been added to the TEHDGA phase, as phase modifiers in significant concentration, to overcome the third-phase formation. To understand the role of these phase modifiers in controlling the third-phase formation, the extraction behaviour of nitric acid and the trivalent representative metal ion Nd(III) was studied in a binary solution containing TEHDGA and phase modifier in n-dodecane. The organic phase obtained after extraction was subjected to dynamic light-scattering studies to examine the aggregation behaviour of the reverse micelles formed upon extraction and to unravel the unique role of TBP and DHOA in controlling the third-phase formation. The study revealed that the addition of these modifiers brought down the average size of aggregates and their distribution in organic phase below the limiting aggregate size for third-phase formation and increased the dispersion of aggregates in the n-dodecane phase. Among the two phase modifiers proposed for trivalent actinide separation from HLLW, TBP has been identified as a promising reagent for minimizing the third-phase formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.