Abstract

We report on the experimental and hydrocode modeling investigation of the early material response to localized energy deposition via nanosecond laser pulses in bulk fused silica. A time-resolved microscope system was used to acquire transient images with adequate spatial and temporal resolution to resolve the material behavior from the onset of the process. These images revealed a high-pressure shock front propagating at twice the speed of sound at ambient conditions and bounding a region of modified material at delays up to one nanosecond. Hydrocode simulations matching the experimental conditions were also performed and indicated initial pressures of \ensuremath{\sim}40 GPa and temperatures of \ensuremath{\sim}1 eV at the absorption region. Both the simulations and the image data show a clear boundary between distinct material phases, a hot plasma and solid silica, with a suggestion that growth of perturbations at the Rayleigh-Taylor unstable interface between the two phases is the seed mechanism for the growth of cracks into the stressed solid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call