Abstract

Neuraminidase (NA) mutations conferring resistance to NA inhibitors were believed to compromise influenza virus fitness. Unexpectedly, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008–2009. The NA of such variant contained additional NA changes (R222Q, V234M and D344N) that potentially counteracted the detrimental effect of the H275Y mutation on viral fitness. Here, we rescued a recombinant Bris07-like WT virus and 4 NA mutants/revertants (H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) and characterized them in vitro and in ferrets. A fluorometric-based NA assay was used to determine Vmax and Km values. Replicative capacities were evaluated by yield assays in ST6Gal1-MDCK cells. Recombinant NA proteins were expressed in 293T cells and surface NA activity was determined. Infectivity and contact transmission experiments were evaluated for the WT, H275Y and H275Y/Q222R recombinants in ferrets. The H275Y mutation did not significantly alter Km and Vmax values compared to WT. The H275Y/N344D mutant had a reduced affinity (Km of 50 vs 12 µM) whereas the H275Y/M234V mutant had a reduced activity (22 vs 28 U/sec). In contrast, the H275Y/Q222R mutant showed a significant decrease of both affinity (40 µM) and activity (7 U/sec). The WT, H275Y, H275Y/M234V and H275Y/N344D recombinants had comparable replicative capacities contrasting with H275Y/Q222R mutant whose viral titers were significantly reduced. All studied mutations reduced the cell surface NA activity compared to WT with the maximum reduction being obtained for the H275Y/Q222R mutant. Comparable infectivity and transmissibility were seen between the WT and the H275Y mutant in ferrets whereas the H275Y/Q222R mutant was associated with significantly lower lung viral titers. In conclusion, the Q222R reversion mutation compromised Bris07-like H1N1 virus in vitro and in vivo. Thus, the R222Q NA mutation present in the WT virus may have facilitated the emergence of NAI-resistant Bris07 variants.

Highlights

  • Influenza viruses are respiratory pathogens associated with significant public health consequences

  • Influenza A viruses of the H1N1 subtype have been associated with seasonal influenza epidemics for many decades and, in presence of immunological pressure, such viruses continue to evolve through genetic variability which is mainly confined to virus segments encoding surface glycoproteins i.e., the hemagglutinin (HA) and neuraminidase (NA) [1]

  • An oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008–2009. This discrepancy could be attributed to permissive NA mutations (R222Q, V234M and D344N) that were identified in most Bris07-like oseltamivir-resistant variants

Read more

Summary

Introduction

Influenza viruses are respiratory pathogens associated with significant public health consequences. Neuraminidase inhibitors (NAI) including inhaled zanamivir, oral oseltamivir and intravenous peramivir provide an important additional measure for the control of influenza infections [2]. These antivirals target the active center of the influenza NA molecule, which is constituted by 8 functional (R-118, D-151, R-152, R-224, E-276, R-292, R-371, and Y-406; N2 numbering) and 11 framework (E-119, R-156, W-178, S-179, D-198, I-222, E-227, H-274, E-277, N-294, and E-425; N2 numbering) residues that are largely conserved among influenza A and B viruses [3]. The emergence of NAI-resistant viruses, as a result of drug use or due to circulation of natural variants, may compromise the clinical utility of this class of antiinfluenza agents

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.