Abstract
Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral quantitative computed tomography at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (UK). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA) and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. BMDtrab decreased exponentially with time since injury at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.