Abstract

AimsThe innate immune response induced by bacterial peptidoglycan peptides, such as γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), is an important host defense system. However, little is known about the innate immune response in the lung alveolar region. In this study, we examined induction of the innate immune response by iE-DAP in human alveolar epithelial cell lines, NCI-H441 (H441) and A549. Main methodsInduction of the innate immune response was evaluated by measuring the mRNA expression of cytokines and their release into the culture medium. Key findingsiE-DAP treatment increased the mRNA expression of interleukin (IL)-6 and IL-8, and increased release of these pro-inflammatory cytokines into the culture medium in H441 cells, but not in A549 cells. Lack of release of these cytokines in A549 cells may have been due to lack of peptide transporter 2 (PEPT2) function. Intracellular nucleotide-binding oligomerization domain 1 (NOD1) recognizes iE-DAP and activates downstream signaling pathways to initiate the immune response. Therefore, the role of mitogen-activated protein kinase (MAPK) signaling pathways was examined in H441 cells. As a result of inhibition studies, receptor-interacting serine/threonine-protein kinase 2 and MAPK signaling pathways, such as p38 MAPK and extracellular signal-regulated kinase, but not c-Jun N-terminal kinase, were determined to be involved in the innate immune response in H441 cells. In addition, the nuclear factor κB pathway also played a role in the innate immune response. SignificanceThese findings indicated that the innate immune response induced by bacterial peptides could occur in a PEPT2- and NOD1-dependent manner in alveolar epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call