Abstract

This paper presents a systematic study on the role of particle size in pure and doped nanocrystalline TiO2 photocatalysts, which was made possible by a versatile wet-chemical process capable of generating near-agglomeration-free TiO2 with well-controlled particle sizes and dopant dispersion. It is shown that particle size is a crucial factor in the dynamics of the electron/hole recombination process. For TiO2 particles with 6 or 11 nm diameter, Fe3+ dopants were added to inhibit the charge carrier surface recombination. The optimal Fe3+ dopant concentration for different particle sizes was identified, and this concentration was found to decrease with increasing particle size. To assist electron and hole separation in TiO2 with 21 nm diameter, Nb5+ dopants were introduced in combination with minor surface Pt dispersion. These carefully engineered nanocrystalline TiO2 catalysts showed higher reactivities than Degussa P25 TiO2 material in photocatalytic decomposition of chloroform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.