Abstract

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that threats the majority of the world’s population. Poly (ADP-ribose) polymerase 1 (PARP-1) and protein poly (ADP-ribosyl)ation (PARylation) regulates manifold cellular functions. The role of PARP-1 and protein PARylation in HCMV infection is still unknown. In the present study, we found that the pharmacological and genetic inhibition of PARP-1 attenuated HCMV replication, and PARG inhibition favors HCMV replication. PARP-1 and its enzymatic activity were required for efficient HCMV replication. HCMV infection triggered the activation of PARP-1 and induced the translocation of PARP-1 from nucleus to cytoplasm. PARG was upregulated in HCMV-infected cells and this upregulation was independent of viral DNA replication. Moreover, we found that HCMV UL76, a true late protein of HCMV, inhibited the overactivation of PARP-1 through direct binding to the BRCT domain of PARP-1. In addition, UL76 also physically interacted with poly (ADP-ribose) (PAR) polymers through the RG/RGG motifs of UL76 which mediates its recruitment to DNA damage sites. Finally, PARP-1 inhibition or depletion potentiated HCMV-triggered induction of type I interferons. Our results uncovered the critical role of PARP-1 and PARP-1-mediated protein PARylation in HCMV replication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call