Abstract

Expression of the src gene of Rous sarcoma virus (RSV) in chicken embryo neuroretinal (NR) cells results in morphological transformation and sustained proliferation of a normally resting cell population. We have previously reported the isolation of mutants of RSV which retain full growth-promoting activity while displaying reduced transforming properties. Two such mutants, PA101 and PA104, were used to investigate whether the p60src-associated kinase activity is required for the mitogenic function of src. A comparison of the patterns of phosphorylation of wild-type and mutant p60src revealed that the phosphorylation of tyrosine residues of p60src of PA104 was markedly reduced, whereas the relative amount of phosphotyrosine in p60src of PA101 was comparable to that of the wild-type protein. In vitro kinase activity of p60src immunoprecipitated from NR cells infected with PA101 or PA104 as measured by phosphorylation of the heavy chains of specific immunoglobulin G molecules was 1/10 that of the wild-type molecule. Moreover, when NR cells infected with mutants temperature sensitive for mitogenic capacity were maintained at a temperature either permissive or restrictive for cell growth, quantitation of kinase activity indicated that proliferation of NR cells could not be linked to the absolute level of in vitro kinase activity of p60src. Transformation of NR cells by wild-type RSV resulted in a 10-fold increase in total cellular phosphotyrosine and in the phosphorylation of tyrosine residues of a 34K protein, a possible in vivo substrate for p60src. In contrast, phosphorylation of tyrosine residues of cellular targets was markedly reduced in NR cells infected with PA101 or PA104. These results indicate that the mitogenic capacity of RSV in NR cells does not require elevated levels of p60src kinase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.