Abstract

The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies.The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression.We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.

Highlights

  • The protein p27Kip1 (p27) is a member of the Cip/ Kip family of cyclin dependent kinase (Cdk) inhibitors that includes p21Cip1 (p21) and p57Kip2 (p57) [1]

  • Data accumulated during the last years clearly indicate that in addition to its classical role as a regulator of cyclin-cyclin-dependent kinase (Cdk) activity, p27 plays a role as a transcriptional regulator

  • This role is mediated by its interaction with specific transcription factors (TFs) that facilitates its association with defined chromatin regions. p27 mainly associate with intergenic distal and intronic regions, it binds to a significant number of gene promoters

Read more

Summary

Introduction

The protein p27Kip (p27) is a member of the Cip/ Kip family of cyclin dependent kinase (Cdk) inhibitors that includes p21Cip (p21) and p57Kip (p57) [1]. The gene encoding human p27 (CDKN1B) is mapped to chromosome 12p13, contains 3 exons and encodes for a protein of 198 aa [2, 3] These three proteins lack stable tertiary structure in isolation and are classified as intrinsically disordered proteins [4, 5]. Despite of that, they have several structured regions in their N-terminal domains [6]. The C-terminal domain (CTD) of p27 is an intrinsically disordered region that associates with a growing number of different proteins and contains a nuclear localization signal (NLS) (aa 152-168) (Figure 1A)

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call