Abstract

Tailoring the structural phases of titanium dioxide (TiO2) is nowadays highly attracting for diverse applications, ranging from optical coatings, where rutile outperforms anatase, to photocatalysis, where a mix of the two is preferred. In this framework, the very high temperature transformation of anatase to rutile constitutes a big drawback. Here, we investigate the structural transformations of granular TiO2 thin films subjected to thermal treatments in different gaseous environments, such as air, oxygen, and vacuum, with the latter expected to enhance the formation of oxygen vacancies. To this aim, we used a combined approach of X-ray diffraction (XRD), Raman Spectroscopy (RS), Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM), and we demonstrate that the achievement of a crystallization temperature as low as 150 °C for the anatase and 250 °C for the rutile is possible. By using a Gibbs free energy minimization approach, the combination of granular morphology and oxygen vacancies is proposed to tune both the amorphous to anatase transition and the anatase to rutile transformation. Finally, we explore the possibility of a low-dimensional growth of anatase-TiO2 by studying phonon confinement-like effect and crystallization kinetics thanks to time-dependent RS experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.