Abstract

Colloidal zinc oxide (ZnO) nanoparticles are frequently used in the field of organic photovoltaics for the realization of solution-producible, electron-selective interfacial layers. Despite of the widespread use, there is a lack of detailed investigations regarding the impact of structural properties of the particles on the device performance. In this work, ZnO nanoparticles with varying surface-area-to-volume ratio were synthesized and implemented into polymer-fullerene bulk heterojunction solar cells with a gas-permeable top electrode. By comparing the electrical characteristics before and after encapsulation, it was found that the internal surface area of the ZnO layer plays a crucial role under conditions where oxygen can penetrate the solar cells. The adsorption of oxygen species at the nanoparticle surface causes band bending and electron depletion next to the surface. Both effects result in the formation of a barrier for electron injection and extraction at the ZnO/bulk heterojunction interface and were more pronounced in case of small ZnO nanocrystals (high surface-area-to-volume ratio). Different transport-related phenomena in the presence of oxygen are discussed in detail, i.e., Ohmic losses, expressed in terms of series resistance, as well as the occurrence of space-charge-limited currents, related to charge accumulation in the polymer-fullerene blend. Since absorption of UV light can cause desorption of adsorbed oxygen species, the electrical properties depend also on the illumination conditions. With the help of systematic investigations of the current versus voltage characteristics of solar cells under different air exposure and illumination conditions as well as studies of the photoconductivity of pure ZnO nanoparticle layers, we gain detailed insight into the role of the ZnO nanoparticle surface for the functionality of the organic solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call