Abstract

The aim of this study was to assess whether depression of cardiac Na+,K(+)-ATPase activity during ischemia/reperfusion (I/R) is associated with alterations in Na+,K(+)-ATPase isoforms, and if oxidative stress participates in these I/R-induced changes. Na+,K(+)-ATPase alpha1, alpha2, alpha3, beta1, beta2, and beta3 isoform contents were measured in isolated rat hearts subjected to I/R (30 min of global ischemia followed by 60 min of reperfusion) in the presence or absence of superoxide dismutase plus catalase (SOD+CAT). Effects of oxidative stress on Na+,K(+)-ATPase isoforms were also examined by perfusing the hearts for 20 min with 300 microM hydrogen peroxide or 2 mM xanthine plus 0.03 U/ml xanthine oxidase (XXO). I/R significantly reduced the protein levels of all alpha and beta isoforms. Treatment of I/R hearts with SOD+CAT preserved the levels of alpha2, alpha3, beta1, beta2, and beta3 isoforms, but not that of the alpha1 isoform. Perfusion of hearts with hydrogen peroxide and XXO depressed all Na+,K(+)-ATPase alpha and beta isoforms, except for alpha1. These results indicate that the I/R-induced decrease in Na+,K(+)-ATPase may be due to changes in Na+,K(+)-ATPase isoform expression and that oxidative stress plays a role in this alteration. Antioxidant treatment attenuated the I/R-induced changes in expression of all isoforms except alpha1, which appears to be more resistant to oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.