Abstract

Cereal leaf protoplasts are often extremely unstable in culture and usually lyse within 24 hours. Using the thiobarbituric acid test and the ferrous thiocyanate test we have shown that corn (Zea mays L. cv. Market Beauty) and wheat (Triticum aestivum L. cv. Benito) leaf protoplasts accumulate peroxides and peroxide degradation products during culture. This increase correlated with an increase in lipoxygenase activity. On the other hand, enzymes involved in detoxification of peroxides such as catalase and peroxidase decreased during culture. The occurrence of lipid peroxidation in leaf protoplasts is likely to be a consequence of a temporary imbalance in the enzymes involved in oxygen metabolism. It has previously been shown that the lipoxygenase inhibitor n-propyl gallate stabilizes the protoplasts in culture and so peroxidation is likely to be the cause of leaf protoplast instability. Protoplasts obtained from suspension cultures are stable in culture and do not undergo lipid peroxidation. This stability is due to a decrease in lipoxygenase activity and increases in catalase and peroxidase activity after protoplast isolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.