Abstract

Vascular dysfunction occurs with aging. We hypothesized that oxidative stress and ANG II [acting via ANG II type 1 (AT(1)) receptors] promotes cerebral vascular dysfunction with aging. We studied young (5-6 mo), old (17-19 mo), and very old (23 +/- 1 mo) mice. In basilar arteries in vitro, acetylcholine (an endothelium-dependent agonist) produced dilation in young wild-type mice that was reduced by approximately 60 and 90% (P < 0.05) in old and very old mice, respectively. Similar effects were seen using A23187, a second endothelium-dependent agonist. The vascular response to acetylcholine in very old mice was almost completely restored with tempol (a scavenger of superoxide) and partly restored by PJ34, an inhibitor of poly(ADP-ribose) polymerase (PARP). We used mice deficient in Mn-SOD (Mn-SOD(+/-)) to test whether this form of SOD protected during aging but found that age-induced endothelial dysfunction was not altered by Mn-SOD deficiency. Cerebral vascular responses were similar in young mice lacking AT(1) receptors (AT(1)(-/-)) and wild-type mice. Vascular responses to acetylcholine and A23187 were reduced by approximately 50% in old wild-type mice (P < 0.05) but were normal in old AT(1)-deficient mice. Thus, aging produces marked endothelial dysfunction in the cerebral artery that is mediated by ROS, may involve the activation of PARP, but was not enhanced by Mn-SOD deficiency. Our findings suggest a novel and fundamental role for ANG II and AT(1) receptors in age-induced vascular dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.