Abstract

The involvement of lipopolysaccharide and outer membrane proteins in the binding ofEscherichia coli to cellulose was investigated. Cellulose binding was assayed in defined strains with or without O-antigenic polysaccharide and in mutants with defects in lipopolysaccharide core synthesis. Binding was also tested in strains lacking major outer membrane proteins. Optimal cellulose binding was exhibited by rough strains and was reduced to various extents in the presence of different O-antigens. Core defects also reduced but did not abolish binding to cellulose. Reduced binding was also found in mutants lacking OmpC protein, but OmpC/OmpA double mutants orompB mutants lacking OmpC and OmpF were not affected. Mutants with reduced cellulose binding were also isolated directly through selection of nonbinding populations after chromatography on cellulose columns. Each of the independent isolates derived fromE. coli K12 with reduced cellulose binding had multiple mutations, with additional phenotypic changes such as phage resistance, increased sensitivity to bile salts, or altered patterns of outer membrane proteins. These results suggest that no single receptor that could be altered by mutation was responsible for the binding ofE. coli to cellulose. Rather, the nonspecific binding of cellulose was more likely to be due to interaction with, or the combined activity of, several integral outer membrane components that could be masked by O-antigen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call