Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that heterodimerize with the retinoid X receptor and then modulate at the transcriptional level the function of many target genes. Three PPARs are known: alpha, beta (sometimes called delta), and gamma. The better studied are PPARalpha and PPARgamma, which are activated by fibrates and thiazolidinediones/glitazones, respectively. It is now believed that activation of the PPARs could be associated with the prevention of heart attack and stroke in humans. Here we report, for the first time, that human platelets contain PPARbeta and that its selective activation inhibits platelet aggregation. PPARbeta is a putative receptor for prostacyclin. Prostacyclin is an important antithrombotic hormone that synergizes with nitric oxide to inhibit platelet aggregation. In the current study, we show that PPARbeta ligands similarly synergize with nitric oxide to inhibit platelet aggregation. These observations challenge our view of a nuclear receptor because PPARbeta is present and active in nonnucleated platelets. Furthermore, these data suggest that some of the antithrombotic actions of prostacyclin may be mediated via activation of PPARs. Thus, our results identify PPARbeta as a novel antiplatelet target that may mediate some of the effects of prostacyclin in blood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.