Abstract

BackgroundChronic inflammation has been implicated in sarcomagenesis. Among various factors, activation of nuclear factor-kappa B (NF-κB) signaling pathway has been documented being able to target genes associated with tumor progression and up-regulate the expression of tumor-promoting cytokines and survival genes in several human solid tumors. Feline injection sites sarcomas (FISS) are malignant entities derived from the mesenchymal origin. The disease has been considered to be associated with vaccine adjuvant, aluminum, which serves as a stimulus continuously inducing overzealous inflammatory and immunologic reactions. To understand the contribution of NF-κB in FISS, detection of activated NF-κB in paraffin-embedded specimens, in vitro establishment of primary cells derived from FISS, and evaluation of the effects of the NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on primary tumor cells were conducted.ResultsIn this study, nuclear expression of NF-κB p65 was detected in 83.3% of FISS cases and not correlated with tumor grading, sex, and age. Primary cells derived from FISS in three cats exhibiting same immunohistochemical characteristics as their original tumor were successfully established. The NF-κB inhibitor, DHMEQ, was able to prevent nuclear translocation of NF-κB p65, inhibit cell proliferation, migration, and colonization in dosage-dependent manners, and induce cell apoptosis in these primary FISS cells.ConclusionsHigh expression rate of nuclear NF-κB p65 in FISS cases and dose-dependent inhibitory effects on the growth of FISS primary cells treated with NF-κB inhibitor suggested that NF-κB might be a potential molecular therapeutic target for FISS.

Highlights

  • Chronic inflammation has been implicated in sarcomagenesis

  • To better understand the importance of Nuclear factor-kappa B (NF-κB) activation in the pathogenesis of Feline injection sites sarcomas (FISS), we evaluated the overall expression rate of nuclear localized NF-κB p65 protein in formalin-fixed, paraffinembedded (FFPE) specimens, followed by in vitro establishment of primary cells derived from FISS for efforts to realize the functional effects of NF-κB through administering the NF-κB inhibitor, DHMEQ, to these cells

  • We were able to show that FISS exhibited canonical activation of the NF-κB pathway due to p65 expression by both immunohistochemistry (IHC) and immunocytochemistry (ICC) staining, and we demonstrated that a NF-κB inhibitor, DHMEQ, significantly inhibited cell proliferation, migration, and colonization, and induces apoptosis of the tumor cells

Read more

Summary

Results

Immunophenotypes of FISS cells, FISS-07, FISS-08, and FISS-10, were consistent with corresponding FFPE specimens; and NF-κB inhibitor DHMEQ inhibited nuclear translocation of p65 NF-κB Three FISS cells, FISS-07, FISS-08, and FISS-10, derived from cat 40, 41, and 42 were established, respectively. Both ICC and IHC stainings using the same antibodies were intended for characterization and identification of the cell cultures and FFPE samples from these three cats. Overall, these three cases (FISS-07, FISS-08, and FISS-10) had the similar ICC/IHC profile to their corresponding FFPE specimens. Our result demonstrated that the colony formation was significantly inhibited by DHMEQ at a concentration of 20 μg/ml for FISS-08 and 10 μg/ml for FISS-10 (P < 0.05) (Fig. 8)

Background
Discussion
Conclusion
Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call