Abstract

The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 °C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premières données sur les mécanismes et la cinétique de la formation du pétrole dans les bassins sédimentaires. Simulation d’un schéma réactionnel sur ordinateur. Oil and Gas Science and Technology 24, 470–501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.