Abstract

High-strength carbon steels of 1200 MPa strength level with different microalloying were tensile tested at constant extension rate and constant load under continuous electrochemical hydrogen charging. The results show that hydrogen markedly reduces elongation and time to fracture of all the studied steels. Fractography of the steels shows that nonmetallic inclusions (NMIs) play the major role in crack initiation in hydrogen-charged specimens. The role of NMIs in the hydrogen-induced fracture of steels is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call