Abstract
Abstract Ablative Rayleigh–Taylor instability (ARTI) and nonlocal heat transport are the critical problems in laser-driven inertial confinement fusion, while their coupling with each other is not completely understood yet. Here the ARTI in the presence of nonlocal heat transport is studied self-consistently for the first time theoretically and by using radiation hydrodynamic simulations. It is found that the nonlocal heat flux generated by the hot electron transport tends to attenuate the growth of instability, especially for short wavelength perturbations. A linear theory of the ARTI coupled with the nonlocal heat flux is developed, and a prominent stabilization of the ablation front via the nonlocal heat flux is found, in good agreement with numerical simulations. This effect becomes more significant as the laser intensity increases. Our results should have important references for the target designing for inertial confinement fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.