Abstract
The current study was performed in 30 anesthetized and mechanically ventilated newborn rabbits to investigate the role of the endothelium-derived relaxing factor nitric oxide (NO) in the renal vasoconstriction observed during hypoxemia. Renal blood flow (RBF) and GFR were determined by the clearance of p-aminohippuric acid and inulin, respectively. In nine newborn rabbits (group 1), acute hypoxemia induced a significant decrease in RBF (-17 +/- 7%) and GFR (-11 +/- 6%). A second group of nine animals was used to determine the role of NO in regulating renal hemodynamics of the immature kidney in physiologic conditions. N omega-Nitro-L-arginine methyl ester (L-NAME), a NO synthesis inhibitor, significantly increased the renal vascular resistance by 31 +/- 9% and decreased RBF and GFR (-20 +/- 6% and -13 +/- 5%, respectively). Acute hypoxemia was induced in 12 additional newborn rabbits during L-NAME infusion (group 3) to define the role of NO in the renal vasoconstriction observed during hypoxemia. The changes in renal hemodynamics were greater in this group than in those induced by hypoxemia alone. The present results suggest that: 1) endogenous NO has a crucial role in maintaining basal renal perfusion, 2) the activity of NO synthase is maintained during acute hypoxemia, and 3) NO could blunt the effects of acute hypoxemia in the immature newborn rabbit kidney.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.