Abstract
Microcystin-LR (MC-LR) is the most abundant and toxic microcystin congener and has been classified as a potential human carcinogen (Group 2B) by the International Agency for Research on Cancer. However, the mechanisms underlying the genotoxic effects of MC-LR during chronic exposure are still poorly understood. In the present study, human–hamster hybrid (AL) cells were exposed to MC-LR for varying lengths of time to investigate the role of nitrogen radicals in MC-LR-induced genotoxicity. The mutagenic potential at the CD59 locus was more than 2-fold higher (p<0.01) in AL cells exposed to a cytotoxic concentration (1μmol/L) of MC-LR for 30days than in untreated control cells, which was consistent with the formation of micronucleus. MC-LR caused a dose-dependent increase in nitric oxide (NO) production in treated cells. Moreover, this was blocked by concurrent treatment with the NO synthase inhibitor NG-methyl-l-arginine (l-NMMA), which suppressed MC-LR-induced mutations as well. The survival of mitochondrial DNA-depleted (ρ0) AL cells was markedly decreased by MC-LR treatment compared to that in AL cells, while the CD59 mutant fraction was unaltered. These results provided clear evidence that the genotoxicity associated with chronic MC-LR exposure in mammalian cells was mediated by NO and might be considered as a basis for the development of therapeutics that prevent carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.