Abstract

In summary, NO is capable of decreasing mitochondrial respiration in a variety of mammalian tissues. This effect is mediated primarily via binding of NO to the O2 binding site of cytochrome oxidase. This highly sensitive interaction presumably reflects a remnant homology between cytochrome oxidase and bacterial nitrate reductase. This effect has been demonstrated at physiologic levels of NO, highlighting the role for NO in the tonic control of cellular respiration. As this inhibition is dependent upon the levels figure: see text[ of NO and O2 in the tissue, various states of NO production and oxygen supply dictate the ultimate respiratory rate of the mitochondria. Furthermore, deviation from a physiologic NO: O2 may lead to an exacerbation of pathologic states, such as congestive heart failure and septic shock. Thus, NO may play a crucial role in the control of cellular respiration, providing an additional mechanism of action for this biologically diverse molecule that is distinct yet inseparable from its dilator effect on blood vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.