Abstract

Previous work from our laboratory indicated that the bile salt sodium deoxycholate (NaDOC) induced apoptosis in cultured cells and in normal goblet cells of the colonic mucosa. We also reported that the normal-appearing flat mucosa of patients with colon cancer exhibited apoptosis resistance. Using immunofluorescence in conjunction with confocal microscopy, we now report that high physiological concentrations (0.5 mM) of NaDOC result in the formation of nitrotyrosine residues, a footprint for the formation of reactive nitrogen species, including peroxynitrite, in plasma membrane-associated proteins of HT-29 cells. Because peroxynitrite is formed from the reaction between nitric oxide and superoxide anion, we specifically looked at the role of nitric oxide and superoxide anion in NaDOC-induced apoptosis. Pretreatment of cells with the inhibitor/antioxidants, N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, copper (II) 3,5-diisopropyl salicylate hydrate, a superoxide dismutase mimetic com-pound, and Trolox, a water-soluble analog of a -tocopherol, alone or in combination, sensitized cells to apoptosis in-duced by 0.5 mM NaDOC. These results suggest that nitric oxide may be part of a signaling pathway that is responsible for apoptosis resistance. The results also indicate that nitric oxide does not appear to protect cells against NaDOC-induced apoptosis by scavenging superoxide anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.