Abstract
The activation of N-methyl- d-aspartate receptors induces the synthesis of nitric oxide, which activates soluble guanylate cyclase and leads to the formation of cyclic GMP in the brain. The inhibition of nitric oxide production, as well as the blockade of N-methyl- d-aspartate receptors, has been reported to prevent the induction of hippocampal long-term potentiation and learning and memory formation in vivo, although the effects of inhibitors of nitric oxide synthase are still controversial. We investigated the putative role of nitric oxide and cyclic GMP in dizocilpine-induced memory impairment in mice. The nitric oxide synthase inhibitors, N G-nitro- l-arginine methyl ester and 7-nitro indazole, as well as dizocilpine, a non-competitive N-methyl- d-aspartate receptor antagonist, dose-dependently impaired spatial working memory in mice, assessed by their spontaneous alternation behavior in a Y-maze. The inhibitory effects of both N G-nitro- l-arginine methyl ester and dizocilpine on their behavior were completely reversed by 8-bromo-cyclic GMP. Cyclic GMP levels in the cerebellum were reduced by treatment with dizocilpine. N G-Nitro- l-arginine methyl ester and 7-nitro indazole reduced cyclic GMP levels in the cerebral cortex/hippocampus and cerebellum, and the suppressive effect of N G-nitro- l-arginine methyl ester on cyclic GMP levels in the cerebral cortex/hippocampus was reversed by co-treatment with l-arginine. Cyclic AMP levels in the brain were not affected by treatment with either dizocilpine, N G-nitro- l-arginine methyl ester, or 7-nitro indazole. Neither N G-nitro- l-arginine methyl ester nor l-arginine had any effect on monoamine and acetylcholine metabolism in the brain. These results suggest that the reduction in nitric oxide/cyclic GMP production in the brain may be responsible for dizocilpine-induced impairment of spontaneous alternation behavior in a Y-maze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.