Abstract

Aerosolized exposure to the chemical warfare vesicant sulfur mustard and its analog nitrogen mustard (HN2) is known to induce airway lesions associated with secretion of proinflammatory cytokines such as IL-6. We have shown recently that HN2 challenge induced IL-6 secretion in human airway epithelial cells, a process mediated via epidermal growth factor receptor (EGFR) signaling. In this study, we evaluated the role of redox signaling in regulating HN2-induced, EGFR-mediated IL-6 secretions in primary cultured normal human bronchial epithelial cells (NHBECs) in the air-liquid interface. HN2-induced EGFR phosphorylation and IL-6 secretion in NHBECs were inhibited by the antioxidant N-acetyl-L-cysteine (NAC) and by the flavoprotein inhibitor diphenyleneiodonium chloride (DPI). These observations suggested that the inflammatory response in NHBECs after HN2 challenge was mediated via oxidative stress. HN2 exposure induced increased reactive oxygen species (ROS) formation and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in NHBECs, findings that were inhibited by NAC and DPI treatment. Among NADPH oxidase isoforms, mRNA expression of dual oxidase (DUOX)1 and DUOX2 were up-regulated by HN2. Furthermore, knockdown of DUOX1 or DUOX2 by short hairpin RNA resulted in inhibition of ROS generation, EGFR pathway activation, and IL-6 secretion in NHBECs. These results provide evidence that redox signaling plays a pivotal role in the HN2-induced airway inflammation and underscore the importance of DUOX1 and DUOX2 in vesicant-induced IL-6 secretion in human airway epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call