Abstract

BackgroundAnopheles mosquitoes transmit malaria which is one of the world’s most threatening diseases. Anopheles dirus (sensu stricto) is among the main vectors of malaria in South East Asia. The mosquito innate immune response is the first line of defence against malaria parasites during its development. The immune deficiency (IMD) pathway, a conserved immune signaling pathway, influences anti-Plasmodium falciparum activity in Anopheles gambiae, An. stephensi and An. albimanus. The aim of the study was to determine the role of Rel2, an IMD pathway-controlled NF-kappaβ transcription factor, in An. dirus.MethodsRACE (Rapid amplification of cDNA ends) was performed on the Rel2 gene. Double-stranded Rel2 was constructed and injected into the thorax of female mosquitoes. The injected mosquitoes were fed on a P. falciparum gametocyte culture and dissected on day 7–9 post-feeding in order to count the oocysts. A survival analysis was conducted by exposing the dsRNA injected mosquitoes to Gram-positive and Gram-negative bacteria.ResultsThis study demonstrated that the Rel2 gene in An. dirus has two isoforms, short length and full length. RNA interference-mediated gene silencing of Rel2 showed that the latter is involved in protection against P. falciparum, Gram-positive bacteria (Micrococcus luteus) with Lys-type peptidoglycan and Gram-negative bacteria (Escherichia coli) with DAP-type peptidoglycan.ConclusionThis study suggested that there are similarities in the splicing events and functionality of the Rel2 gene, between the Anopheles species. Among all the important anophelines, the immunity of only a few has been thoroughly investigated. In order to develop novel vector-based control strategies and restrict malaria transmission, the immune pathways of these important vectors should be thoroughly investigated.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1810-0) contains supplementary material, which is available to authorized users.

Highlights

  • Anopheles mosquitoes transmit malaria which is one of the world’s most threatening diseases

  • Rel2 knockdown efficiency Four days after the Doublestranded RNA (dsRNA) injection, RNA was extracted and converted to cDNA to be used in reverse transcription quantitative PCR

  • Knockdown of Rel2 increases susceptibility to P. falciparum infection in An. dirus In order to investigate the function of Rel2, an RNA interference (RNAi) mediated gene silencing approach was used

Read more

Summary

Introduction

Anopheles mosquitoes transmit malaria which is one of the world’s most threatening diseases. Anopheles dirus (sensu stricto) is among the main vectors of malaria in South East Asia. The mosquito innate immune response is the first line of defence against malaria parasites during its development. Malaria, caused by the protozoan parasites Plasmodium spp., is among the world’s most life threatening infectious diseases. About 70 species of Anopheles are capable of transmitting malaria [1]. Anopheles dirus (sensu stricto) (s.s) (species A) is an important vector and can be found in Thailand, Myanmar, Cambodia, Vietnam and Laos [3]. The highly anthropophilic nature of An. dirus A is one of the reasons for this species being the main malaria vector in Thailand [3, 4]. A multifaceted approach would be required to curb the disease, especially in light of recent problems that include drug-resistant parasites and insecticide-resistant mosquitoes [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.