Abstract

Sequencing techniques are at the forefront of medical diagnostics in the current era of personalized medicine and targeted therapy. These techniques can identify the exact genetic change at the nucleotide level which aids in delineating the molecular pathogenesis and may also help in development of tailored therapy. Different sequencing approaches can be used for either the discovery of new genetic aberrations or checking the known genetic change for diagnostic purposes, depending on the requirement. Next generation sequencing (NGS) refers to the post-Sanger technologies, i.e., sequencing technologies developed after Sanger sequencing. So, NGS includes a group of technologies having the capacity to sequence large segments of genome or entire genome in high-throughput experiments to detect genetic aberrations in a much faster and reliable way [1]. The current high-throughput NGS techniques, which are also being made available at affordable costs, are gradually replacing the conventional or first generation sequencing techniques in the clinical settings. In this chapter, the basic workflow of next generation sequencing (NGS) and its application in hematological disorders has been briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call