Abstract

The nuclear level densities, spin cut off parameters, and entropies have been extracted in ${}^{116\ensuremath{-}119}$Sn and ${}^{162,163}$Dy nuclei using superconducting theory, which includes nuclear pairing interaction. The results agree well with the recent data obtained from experimental level densities by the Oslo group for these nuclei. Also, the entropy excess ratio proposed by Razavi et al. [R. Razavi, A.N. Behkami, S. Mohammadi, and M. Gholami, Phys. Rev. C 86, 047303 (2012)] for a proton and neutron as a function of nuclear temperature have been evaluated and are compared with the spin cut off excess ratio. The role of the neutron (proton) system is well determined by the entropy excess ratio as well as the spin cut off excess ratio. The moment of inertia for even-odd and even-even nuclei are also compared. The moment of inertia carried by a single hole is smaller than the single particle moment of inertia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.