Abstract

Complex regional pain syndrome (CRPS) patients exhibit multiorgan pathology and inflammatory changes after limb trauma. The objective of this study was to identify how neuro-cutaneous signaling is facilitated after fracture and examine how this altered signaling contributes to the development of CRPS-like changes in the injured limb. These studies used a rat tibia fracture model that reliably generates hindpaw warmth, edema, increased spontaneous protein extravasation, allodynia, unweighting, and periarticular bone loss, a symptom complex resembling the vascular, nociceptive, and bone sequelae observed in early CRPS. Substance P (SP)-evoked extravasation responses, EIA and PCR assays, and immunohistochemical techniques were used to evaluate post-fracture up-regulation of neuro-cutaneous inflammatory signaling. A SP NK1 receptor antagonist was used to inhibit CRPS-like changes in the fracture model. In the rat fracture model the SP-evoked extravasation and edema responses were enhanced. SP NK1 receptor expression also increased in the microvascular endothelial cells in the fracture hindpaw skin, leading us to postulate that NK1 receptor up-regulation mediates the facilitated extravasation and edema responses observed after SP injection. The NK1 receptor antagonist LY303870 reversed hindpaw warmth, edema, increased vascular permeability, allodynia, and unweighting observed after tibia fracture in rats. There was also increased keratinocyte proliferation and NK1 receptor expression in the fracture hindpaw. Similar to the rat fracture model, we have observed increased epidermal thickness and keratinocyte NK1 expression in skin biopsies from CRPS patients. There was an up-regulation of inflammatory cytokine expression in the rat hindpaw skin and in keratinocytes at 4 weeks post-fracture. These inflammatory mediators appear to play a crucial role in the development of pain behavior after fracture, as we have repeatedly demonstrated that inhibition of cytokine, and NGF signaling prevents the allodynia and attenuates unweighting at 4 weeks post-fracture. LY303870 treatment also reversed post-fracture keratinocyte proliferation, suggesting that SP might be acting as an intermediate mediator in the inflammatory cascade by causing the up-regulation of inflammatory proteins that can directly sensitize nociceptors in the skin and joints. Collectively, these data suggest that neuro-cutaneous signaling is up-regulated and can mediate inflammatory changes observed in the hindpaw skin of the fracture rat model and in human CRPS skin. Future translational and clinical studies mapping these inflammatory changes may identify novel therapeutic targets for preventing post-traumatic pain from transitioning into chronic CRPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call